人工智能60周年:站在第三次浪潮的风口
来源: 日期:2016-05-03 20:44:35 点击:

机器感知能力正在超越人类

人工智能的发展可谓起起落落,一方面被视为冉冉升起的新星,另一方面也饱受批评,并遭遇过两次严重挫折。现在正处于第三个春天,目前人工智能的发展还处于比较初级的阶段。当下是人工智能的第三次高潮,而且还会有第四次浪潮的到来。

2006年以来,人工智能发展加速。究其原因,大计算能力和深度学习是主要推动力。一方面,经过几十年的积累,为可观的计算能力打下基础,另一方面深度学习的发展提供了灵活、具有快速建模能力的学习系统。这两者的结合,能够将大数据背后蕴藏的各种复杂关系快速提取出来。

随着深度学习逐步在各种人工智能问题里深入地使用,在一些特定领域,机器的感知能力正在超越人类的水平。例如,在中文语音识别方面,百度的错误率是5.7%,而人类的错误率则是9.7%。另外,在人脸识别领域,人类的错误率是0.8%,而百度则是0.23%

除百度外,谷歌、微软、IBM、阿里巴巴、科大讯飞等也是人工智能领域的佼佼者。美国东部时间20151210,微软亚洲研究院视觉计算组在2015 ImageNet计算机识别挑战赛中凭借深层神经网络技术的突破,获得图像分类、图像定位以及图像检测全部三个主要项目的冠军。在此次挑战赛中,微软亚洲研究院的研究团队使用了一种深度高达152层的神经网络,比此前成功使用的神经网络层数多5倍以上,将错误率降低到了3.5%。而在此前同样的实验中,人眼辨识的错误率为5.1%

人工智能的属性包括聚合的智能、自适应的智能、隐形的智能,而微软在ImageNet挑战赛中的成功,证明了“深度学习彻底改变了图像识别领域”。人工智能的下一个60年将是人类+机器,即把两者更强的地方结合起来,形成增强智能。

还缺少什么

谷歌人工智能程序AlphaGo41的战绩击败韩国围棋职业九段选手李世石,被认为是人工智能发展最新的里程碑。

未来机器人给人带来的影响将远远超过计算机和互联网过去几十年对世界的改变。而理想中的机器人应该是“有智慧、有个性、有行为能力,甚至还有情感的。”

深度学习确实给人工智能带来了快速的进展,但未来还有很长的路要走。“人类智能的核心是自我学习和创造的能力。我们看到现在有很多具体的智能系统,比如AlphaGo,还缺乏一种自我学习和创造的能力。”

 

下一步的突破

从上世纪60年代至今,对于人工智能的研究主要从两个层面进行了探索,首先是逻辑层面,即通过逻辑和搜索来完善人工智能,在发现瓶颈后,又开始了机器学习的研究。

人工智能的下一步突破将是通用性的人工智能,即将基于搜索和逻辑的人工智能方法与机器学习结合起来,形成一个完整的智能机器。

人工智能的成功需要三大条件,一是高质量的数据,二是能够开发出先进算法的人才,三是强大的计算能力。

深度学习近年来之所以备受关注,是因为一般而言性能的准确度是随着数据的增长而增加的,但其他机器学习方法随着数据的增加,性能在某一个点就不再提高了,而对于深度学习还没有发现这一现象。深度学习的未来趋势包括四个方向:学习如何记忆及关注与取舍,把注意力集中到需要关心的细节上,增强学习以及整体任务的序列化。

人工智能要想发展,除了算法上的改进,还要解决硬件面临的挑战。在智能时代,处理器的负载不再是以前的传统计算,而是深度学习。通用处理器将由此面临性能和功耗的问题。智能时代需要深度学习芯片作支撑。